If it's not what You are looking for type in the equation solver your own equation and let us solve it.
27x^2+60x-32=0
a = 27; b = 60; c = -32;
Δ = b2-4ac
Δ = 602-4·27·(-32)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-84}{2*27}=\frac{-144}{54} =-2+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+84}{2*27}=\frac{24}{54} =4/9 $
| 9n+-13n+-1=-13 | | X*x+x*x=4 | | 13q–7q–5q=16 | | -2(5v+6)=-5(2v+3)-7 | | 2a=-1a | | 10(50)+15x=1670 | | 4q=5q+5 | | -8c+2=-7c | | n+324=500 | | -28=30+4(x-2)+6x | | 8x-12-6x=-(6+x) | | d3+10=14 | | 4x+3x+2x=-36 | | .333x^2=-3 | | 8–6k=-7k | | k-7/8=5/2 | | -3z=-9–2z | | -5(2x-6)+3=40-77 | | 13−4x=20 | | 600=(6x-(1/6))(30x+5)(x) | | 6-4(x+2)=9-23 | | 10m+10=9m | | 4(3x-1)-(2+x)=3 | | -1=-4s–3 | | -s=-4s–3 | | t-3t^2/3-t=t/2 | | 5(2d-2)=9d+9 | | 14-9=3-6w-10 | | 9h–5=10h | | 10u=10+8u | | 7r=-6+9r | | 4d–6=2(3d–4)1 |